Evolving Fuzzy Neural Networks for Adaptive, On-line Intelligent Agents and Systems

نویسنده

  • Nikola Kasabov
چکیده

This paper discusses and illustrates one paradigm of neuro-fuzzy techniques for building on-line, adaptive intelligent agents and systems. This approach is called evolving connectionist systems (ECOS). ECOS evolve through incremental, on-line learning, both supervised and unsupervised. They can accommodate new input data including new features, new classes, etc. The ECOS framework is presented and illustrated on a particular type of evolving neural networks evolving fuzzy neural networks. ECOS are orders of magnitude faster than multilayer perceptrons, or fuzzy neural networks and they belong to the new generation of adaptive intelligent systems. ECOS are suitable techniques for building intelligent agents on the WWW, intelligent mobile robots and embedded systems. An ECOS based structure of an intelligent agent is proposed and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chapter 7. Evolving Connectionist and Fuzzy - Connectionist Systems: Theory and Applications for Adaptive, On-line Intelligent Systems

The paper introduces one paradigm of neuro-fuzzy techniques and an approach to building on-line, adaptive intelligent systems. This approach is called evolving connectionist systems (ECOS). ECOS evolve through incremental, online learning, both supervised and unsupervised. They can accommodate new input data, including new features, new classes, etc. New connections and new neurons are created ...

متن کامل

Evolving Fuzzy Neural Networks: Theory and Applications for On-line Adaptive Prediction, Decision Making and Control

The paper introduces one paradigm of neuro-fuzzy techniques and an approach to building on-line, adaptive intelligent systems. This approach is called evolving connectionist systems (ECOS). ECOS evolve through incremental, on-line learning, both supervised and unsupervised. They can accommodate new input data, including new features, new classes, etc. New connections and new neurons are created...

متن کامل

Brain-like Functions in Evolving Connectionist Systems for On-line, Knowledge-Based Learning

The paper discusses some biological principles of the human brain that would be useful to implement in intelligent information systems (IS). These principles are used to formulate seven major requirements to the current and the future IS. These requirements are met in a new connectionist architecture called evolving connectionist systems (ECOS). ECOS are designed to facilitate building on-line,...

متن کامل

DUNEDIN NEW ZEALAND Evolving Connectionist Systems for On-line, Knowledge-based Learning: Principles and Applications

The paper introduces evolving connectionist systems (ECOS) as an effective approach to building on-line, adaptive intelligent systems. ECOS evolve through incremental, hybrid (supervised/unsupervised), on-line learning. They can accommodate new input data, including new features, new classes, etc. through local element tuning. New connections and new neurons are created during the operation of ...

متن کامل

Evolving Connectionist Systems for On-line, Knowledge-based Learning: Principles and Applications

The paper introduces evolving connectionist systems (ECOS) as an effective approach to building on-line, adaptive intelligent systems. ECOS evolve through incremental, hybrid (supervised/unsupervised), on-line learning. They can accommodate new input data, including new features, new classes, etc. through local element tuning. New connections and new neurons are created during the operation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999